Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 [ 2 ] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

Модель I Модель II

Рис. 1.1. Модели распространения вертикальной трещины

Возможность образования вертикальной или горизонтальной трещины зависит от распределения тектонических напряжений [76]. На малых глубинах вертикальное напряжение может оказаться значительно меньше горизонтальных эффективных напряжений, что благоприятствует образованию горизонтальной трещины. Считается, что в нормальных условиях горизонтальные трещины образуются на глубинах до 200 м, а вертикальные - на глубинах свыше 400 м [84]. На промежуточных глубинах, где главные напряжения примерно равны, ориентация трещин определяется другими факторами, например анизотропией. Поскольку нефтяные и газовые пласты, разрабатываемые в настоящее время, в основном приурочены к значительным глубинам, в большинстве теоретических исследований рассматриваются вертикальные трещины.

1.2. ЗАРУБЕЖНЫЙ ОПЫТ ИСПОЛЬЗОВАНИЯ ГИДРОРАЗРЫВА

Впервые в нефтяной практике гидравлический разрыв был произведен в 1947 г. в США. Технология и теоретические представле-



ния о процессе ГРП были описаны в работе J.B. Clark [130] в 1949 г., после чего эта технология быстро приобрела широкое распространение. К концу 1955 г. в США было проведено более ста тысяч ГРП [166]. По мере совершенствования теоретических знаний о процессе [6, 30-32, 130, 137, 164, 166, 191, 204, 235] и улучшения технических характеристик оборудования, жидкостей разрыва и расклинивающих материалов успешность операций трещинооб-разования достигла 90 % [164]. К 1968 г. в мире было произведено более миллиона операций. В США пиковое количество операций по стимулированию скважин методом гидравлического разрыва производилось в 1955 г. и составляло 4500 ГРП в месяц, к 1972 г. это количество снизилось до 1000 ГРП в месяц и к 1990 г. стабилизировалось на уровне 1500 операций в месяц [164, 171].

Технология применения гидроразрыва в первую очередь основана на знании механизма возникновения и распространения трещин, что позволяет прогнозировать геометрию трещины и оптимизировать ее параметры. Первые достаточно простые модели, определяющие связь между давлением жидкости разрыва, пластической деформацией породы и результирующими длиной и раскрытием трещины [6, 30-32, 146, 204], отвечали потребностям практики до тех пор, пока операции ГРП не требовали вложения больших средств. Внедрение глубокопроникающего и массированного ГРП, требующего большого расхода жидкостей разрыва и проппанта, привело к необходимости создания более совершенных двух- и трехмерных моделей трещинообразования, позволяющих более достоверно прогнозировать результаты обработки [132, 134, 137, 190, 212, 221, 224, 245].

Важнейшим фактором успешности процедуры ГРП является качество жидкости разрыва и проппанта. Главное назначение жидкости разрыва - передача с поверхности на забой скважины энергии, необходимой для раскрытия трещины, и транспортировка проппанта вдоль всей трещины. Основными характеристиками системы "жидкость разрыва - проппант" являются [137]:

реологические свойства "чистой" и содержащей проппант жидкости;

инфильтрационные свойства жидкости, определяющие ее утечки в пласт в ходе гидроразрыва и при переносе проппанта вдоль трещины;



способность жидкости обеспечить перенос проппанта к концам трещины во взвешенном состоянии без его преждевременного осаждения;

возможность легкого и быстрого выноса жидкости разрыва для обеспечения минимального загрязнения упаковки проппанта и окружающего пласта;

совместимость жидкости разрыва с различными добавками, предусмотренными технологией, возможными примесями и пластовыми жидкостями;

физические свойства проппанта.

Технологические жидкости гидроразрыва должны обладать достаточной динамической вязкостью для создания трещин высокой проводимости за счет их большого раскрытия и эффективного заполнения проппантом; иметь низкие фильтрационные утечки для получения трещин необходимых размеров при минимальных затратах жидкости; обладать совместимостью с породами и флюидами пласта; обеспечивать минимальное снижение проницаемости зоны пласта, контактирующей с жидкостью разрыва; обеспечивать низкие потери давления на трение в трубах; иметь достаточную для обрабатываемого пласта термостабильность; иметь высокую сдвиговую стабильность, т.е. устойчивость структуры жидкости при сдвиге; легко выноситься из пласта и трещины гидроразрыва после обработки; быть технологичными в приготовлении и хранении в промысловых условиях; иметь низкую коррозионную активность; быть экологически чистыми и безопасными в применении; иметь относительно низкую стоимость [53, 94,

137].

Первые жидкости разрыва были на нефтяной основе, однако с конца 50-х гг. начали применять жидкости на водной основе, наиболее распространенные из которых - гуаровая смола и гидрокси-пропилгуар. В настоящее время в США более 70 % всех ГРП производится с использованием этих жидкостей. Гели на нефтяной основе используются в 5 % случаев, пены со сжатым газом (обычно СОг и N2) применяют в 25 % всех ГРП [137]. Для повышения эффективности гидроразрыва в жидкости разрыва добавляют различные присадки, в основном это антифильтрационные агенты и агенты снижения трения.

Неудачи при проведении гидроразрыва в низкопроницаемых газовых пластах часто обусловлены медленным выносом жидко-




0 1 [ 2 ] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71



Яндекс.Метрика