Демонтаж бетона: rezkabetona.su

Главная -> Словарь

 

Адсорбционной способностью


Рис. 60. Зависимость удельной адсорбционной поверхности 5а, концентрации функциональных кислородных групп оф^р , сорбции паров бензола а и выхода летучих веществ V г от температуры обработки кокса при измельчении продолжительностью 60 мин.

На рис. 60 показана зависимость удельной адсорбционной поверхности 5а и других свойств, характеризующих активность нефтяного пиролизного кокса от температуры термообработки. Из кривых изотерм сорбции — десорбции видно, что при температурах выше 700°С на поверхности кокса происходит по-существу необратимая адсорбция бензола. В данном случае рассматриваются усредненные значения плотностей нефтяных кок-

Рис.. 64. Зависимость содержания связанной серы в саже от ее удельной адсорбционной поверхности 8а .

нений протекают реакции, сопровождающиеся образованием вторичных поверхностных органических соединений серы. При времени контакта 2 с содержание вторичных сернистых соединений в саже возрастает в зависимости от ее удельной адсорбционной поверхности прямолинейно , достигая максимальной величины при 600 °С. Взаимодействие нефтяных углеродов с гете-роэлементами обусловлено поверхностно-активными свойствами реагирующих веществ.

- по величине удельной адсорбционной поверхности, м~/г;

§ 35. Определение удельной адсорбционной поверхности....... 228

§ 35. ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ АДСОРБЦИОННОЙ ПОВЕРХНОСТИ

Для подсчета удельной адсорбционной поверхности сажи согласно формуле

Рис. 60. Зависимость удельной адсорбционной поверхности Sa, концентрации функциональных кислородных групп стфкг, сорбции паров бензола а и выхода летучих веществ V г от температуры обработки кокса при измельчении продолжительностью 60 мин.

На рис. 60 показана зависимость удельной адсорбционной поверхности Sa и других свойств, характеризующих активность нефтяного пиролизного кокса от температуры термообработки. Из кривых изотерм сорбции —десорбции видно, что при температурах выше 700°С на поверхности кокса происходит по-существу необратимая адсорбция бензола. В данном случае рассматриваются усредненные значения плотностей нефтяных кок-

Рис. 64. Зависимость содержания связанной серы в саже от ее удельной адсорбционной поверхности S а .

Более однозначны сведения по отложению металлов. Металлсодержащие соединения, обладая большой адсорбционной способностью,отлагаются преимущественно во входной зоне слоя катализатора по ходу сырья и в наружном слое гранул катализатора. Фронт увеличения содержания металлов со временем продвигается в глубь слоя и гранулы. Наиболее ярко выражен фронт накопления у ванадия . Характер распределения различных элементов по глубине гранулы изучен нами по данным рентгеноспектрального анализа.

Адсорбция молекул моюще-диспергирующих присадок на металлической поверхности определяет проявление собственно моющего действия вследствие образования двойного электрического слоя. Из числа моюще-диспергирующих присадок наибольшей адсорбционной способностью на металле обладают сукцинимиды .

Предполагается, что механизм стабилизирующего действия помимо адсорбции определяется также дисперсионным взаимо-дейс^вием углеводородных радикалов молекул присадки с молекулами масла. Связь между стабилизирующими свойствами и адсорбционной способностью присадок на твердых продуктах углеродистого характера не во всех случаях оказывается прямой. Так, например, если адсорбция нейтрального сульфоната на саже симбатно изменяет его стабилизирующие свойства, то в случае высокощелочного сульфоната такая зависимость имеет значительно более сложный характер, а именно: количество адсорбированной высокощелочной присадки равномерно возрастает от 0,02 до 0,5%, в то время как стабилизирующая способность начинает проявляться только после 0,1%. Это обстоятельство подтверждает принципиальное различие в механизме действия высокощелочных и нейтральных сульфонатов. В частности, полагают, что основную роль в стабилизирующем действии высокощелочного сульфоната играет второй адсорбированный слой присадки.

В соответствии с этой гипотезой предполагается, что молекулы, адсорбированные на деталях двигателя, образуют прочный защитный слой, исключающий любой контакт углеводородов с металлом. Под действием высокой температуры, металла и кислорода воздуха образованный граничный слой претерпевает изменения, приводящие к образованию дисперсной фазы, не способной удерживаться на поверхности металла. Эффективность моющего действия, по мнению К. К. Папок, зависит от двух факторов: срока жизни молекул присадки на нагретой поверхности и от характера продуктов, образующихся при окислении масла. Высокоэффективная по моющему действию присадка должна обладать высокой адсорбционной способностью, значительно превышающей активность молекул масла. Кроме того, присадка должна иметь большое время удерживания на металле в исходном состоянии и малое время удерживания при окислении и разложении.

Как отмечалось выше, непосредственная связь между адсорбционной способностью присадок и эффективностью их про-тивоизносного действия наиболее отчетливо проявляется в тех случаях, .когда механизм действия присадки имеет преимущественно физический характер, либо когда в процессе трения не происходит генерирования такого количества тепла, которое могло быть достаточным для заметного проявления химической активности присадок. Вместе с тем температурные условия работы современных смазочных масел зачастую оказываются довольно жесткими. Поэтому при подборе присадок наряду с их поверхностной активностью необходимо учитывать и реакционную способность присадок. Более того, в зависимости от режима трения последняя может явиться определяющим фактором в механизме действия той или иной присадки.

Реакционная способность присадок и ее роль в механизме противоизносного действия. При значительных скоростях скольжения и больших удельных давлениях, характерных для большинства современных узлов трения, на площадях контакта происходит значительное генерирование тепла, интенсифицирующее развитие различных химических процессов на трущихся поверхностях. В этих условиях большое значение наряду с адсорбционной способностью присадок приобретает их химическая активность. С ней связана способность присадок предотвращать задир трущихся поверхностей, между которыми по разным причинам нарушается масляная пленка .

Применяемые катализаторы пористы и обладают большой адсорбционной способностью. Их свойства сильно зависят от способа получения. Обсуждение значения физической структуры катализатора, а также соответствующая математическая обработка содержатся в работе Уилера . Два катализатора с одинаковым химическим составом, но с разной величиной и с разным расположением пор могут отличаться друг от друга по активности, избирательности, температурным коэффициентам скоростей реакций и по устойчивости к действию каталитических ядов . Хотя химические свойства и каталитическое действие поверхности могут не зависеть от размера пор, мелкие поры по-разному влияют на процесс крекинга в зависимости от того, каким образом проникают молекулы углеводородов в глубину пор, как они удаляются и в течение какого времени они проходят через поры катализатора.

Активность катализатора может сильно уменьшиться в присутствии определенных веществ — ядов: серы и ее соединений , As, Hg, P, CO, HCN и т. д. Чувствительность катализаторов к действию ядов зависит от природы катализатора, способа его приготовления и от рабочей температуры. Наибольшую чувствительность к ядам имеют катализаторы с большой адсорбционной способностью . Так, платиновые катализаторы теряют активность при концентрациях 0,0001 % H2S или 0,000001 % HCN; в то же время молибденовые катализаторы вообще нечувствительны к присутствию серы. При гидрировании водяного газа допускается содержание серы 0,1 г на 100 м3 таза.

При погружении твердого вещества в жидкий нефтепродукт выделяется теплота смачивания. Тепловой эффект смачивания зависит от природы вещества и химического состава нефтепродукта. По величине теплоты смачивания можно судить об адсорбируемости различных веществ на том или ином адсорбенте*. Так, например, теплота смачивания силикагеля метиловым спиртом 15,3, этиловым спиртом 14,7, бензолом 8,1, пентаном и гексаном 3,1, а теплота смачивания цеолита NaY к-гептаном составляет 32,2 ккал/кг. Из этих данных видно, что цеолит обладает значительно большей адсорбционной способностью по отношению к нормальным парафиновым углеводородам, чем силикагель. В то же время метиловый и этиловый спирты, а также бензол лучше адсорбируются силикагелем, чем пен тан и гексан.

дородов разработан во ВНИИ НП и пригоден для топлив, содержащих не более 3% диолефиновых углеводородов. Метод заключается в разделении пробы бензина на группы углеводородов, обладающие различной адсорбционной способностью. В качестве адсорбента используют активированный силикагель . Для фиксации образующихся зон различных групп углеводородов на силикагель наносят флуоресцентный индикатор, представляющий собой смесь судана III с частями оле-финового и ароматического красителей, растворенную в ксилоле. Такой индикатор, распределяясь на силикагеле в соответствующих группах углеводородов, в ультрафиолетовом свете позволяет по различной окраске определить размеры зон различных углеводородов. Метод называется флуоресцентно-индикаторным адсорбционным .

В. С. Гутыря высказал предположение о связи установленной закономерности с воздействием на нефть природных алюмосиликатов , залегающих на пути ее миграции или ограничивающих толщи нефтеносных пород. Влияние алюмосиликатов на свойства нефтей отмечал уже И. М. Губкин, однако связывал его только с адсорбционной способностью глин. В частности, низкое содержание смол в нефтях Сураханского месторождения И. М. Губкин объяснил наличием в местах залегания большого количества природных глин и адсорбцией на глинах смолистых компонентов нефти. В. С. Гутыря на основании изучения каталитических свойств активированных и природных алюмосиликатов пришел к выводу о возможности реализации каталитической способности глин при контакте с нефтью в природных условиях. Наиболее вероятной представлялась возможность протекания в условиях залегания нефтепасыщенных алюмосиликатных пород медленного низкотемпературного жидкофазного крекинга и процессов гидрирования ароматических углеводородов.

 

Активности разделяемых. Активности стабильности. Акустический генератор. Альдегидов полученных. Альтернативных вариантов.

 

Главная -> Словарь



Яндекс.Метрика