Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

[ 0 ] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

физика нефтегазовых коллекторов

Изучение условий формирования залежей нефти и газа, поиски и рациональная разработка их неразрывно связаны с необходимостью изучения физических свойств горных пород и содержащихся в них полезных ископаемых. Например, для рациональной разработки нефтяной залежи необходимо иметь представление о содержащихся в ней абсолютных и промышленных запасах нефти и газа, выбрать систему разработки и установить темп извлечения их. Для этого, в свою очередь, требуется знать гидрогеологические и физико-химические свойства нефти, газа и вмещающих их пород. В частности, чтобы определить абсолютные запасы нефти или газа в коллекторе, необходимо знать размеры залежи, пористость и водонасыщенность коллектора, объемные коэффициенты нефти и газа в пластовых условиях. Для определения промышленных запасов, кроме того, должны быть известны максимальные коэффициенты нефтеотдачи и газоотдачи коллектора.

Нефть и газ из залежи могут отбираться с различной интенсивностью. Не всякий темп отбора их может быть признан эффективным в отношении затраты времени и особенно нефте- и газоотдачи пласта. Дело в том, что нефтеотдача связана с весьма сложным комплексом физических и физико-химических явлений, которыми сопровождается вытеснение нефти из отдельных пор коллектора. Современные исследования показывают, что изучения одного лишь макродвижения жидкостей и газов в пористой среде без учета микропроцессов недостаточно для того, чтобы правильно представить все явления, связанные с движением жидкостей и газов в горных породах. Дальше будет показано, насколько важно изучение микропроцессов в горной породе для изыскания путей увеличения нефтеотдачи, равномерности продвижения контуров нефтеносности и газоносности, определения режимов фильтрации жидкостей и газов, освоения скважин и рациональной разработки нефтяных и газовых залежей в целом.

Как известно, большинство горных пород не однородно по проницаемости, пористости, гранулометрическому составу и т. д. Скорость движения жидкостей и газов в порах разного размера различна. Следовательно, и продвижение контуров нефтеносности и газоносности в коллекторах происходит неодинаково. Особенно это заметно в нефтяных залежах. Вследствие неравномерности продвижения контура нефтеносности в нефтесодержащей породе образуются микроцелики нефти - небольшие скопления ее в одном или нескольких поровых каналах; окруженных водой. Если разность давлений по обе стороны микроцеликов не превышает капиллярного давления, то значительное количество нефти остается неизвлеченным из породы и тем больше, чем больше ее неоднородность и поверхностное натяжение на границе раздела вода - нефть.



Нефтеотдача прп определенных условиях может зависеть также от смачиваюш;ей способности воды при вытеснении ею нефти из коллектора. Смачиваюш;ая способность воды в процессе ее движения зависит не только от физико-химических факторов, но также и от CKopocTii движения водонефтяного контакта в поровых каналах, и от структуры поровых каналов. В связп с этим большое значение приобретает количественная характеристика смачиваемости, т. е. величина краевых углов смачивания при движении жидкостей в порах породы.

Для рациональной разработки нефтяных залежей большое значение имеет состояние жидкостей п газов в природных условиях. Как известно, непременными спутниками нефти в большинстве нефтяных залежей являются вода и газ. В зависимости от количества нефти п газа, а также от давления и температуры в коллекторе нефтяной газ может быть растворен в нефти или находиться в пласте в свободном состоянии. Прп понижении давления в залежи ниже давления насыщения часть газа из нефти переходит в свободное состояние. В этом случае приток жидкости к скважине из коллектора уменьшается, так как для газированной нефти относительная проницаемость коллектора снижается. Вместе с тем ухудшается и его нефтеотдача в результате частичной закупорки пор коллектора пузырьками газа и капельками нефти. Таким образом, для проектирования и осуществления рациональной разработки нефтяных залежей необходимо знать давление, температуру и давление насыщения нефти газом в залежи.

При отборе нефти из залежи весьма существенное значение имеет состояние призабойной зоны коллектора. При разработке нефтяных месторождений бывают случаи, когда ввод скважин в эксплуатацию после окончания бурения задерживается ввиду отсутствия притока нефти из-за отрицательного влияния воды, проникающей в коллектор из глинистого раствора в процессе бурения. Вода вместе с нефтью при известных условиях образует смесь, которая частично закупоривает поровые каналы, снижая проницаемость коллектора. Та часть проникшей в породу воды, которая способна перемещаться по поровым каналам, движется с очень малой скоростью вследствие особого характера движения смеси в капиллярах. Решающее значение в этом случае имеют разлгер поровых каналов, толщина пограничных слоев и величина поверхностного натяжения на границе раздела вода - нефть. Эти же факторы определяют эффективнвсть при кислотной обработке забоя скважин, проводимой с целью восстановления проницаемости призабойной зоны коллектора.

Следовательно, какой бы вопрос, относящийся к отбору жидкости н газа горных пород, не рассматривался, всюду приходится иметь дело с явлениями, происходящими в отдельных капиллярных каналах.

В соответствии с намеченным отбором жидкости и газа из залежи определяются число и расположение скважин на месторождении. При этом, помимо геологических факторов, необходимо учитывать



проницаемость коллектора и вязкость содержащихся в нем жидкостей и газа. Это относится не только к эксплуатационным, но и к нагнетательным скважинам при проведении мероприятий по поддержанию давления в залежи. Вязкость нефти в природных условиях зависит от температуры и количества растворенного в ней газа. Имеющийся опыт показывает, что анализ проб нефти, газа и воды, отбираемых с забоя скважин, позволяет получить данные, которые с достаточной степенью объективности могут характеризовать их свойства во всех местах залежи.

В этом отношении несколько сложнее обстоит дело с анализом керна, отбираемым в процессе бурения скважин. Керн, как бы он ни был велик, имеет слишком малую площадь поперечного сечения по сравнению с общей площадью изучаемого коллектора, приходящейся на одну скважину. И, тем не менее, изучение свойств горных пород по керну имеет исключительно большое значение, если отбор керна и последующий анализ его были выполнены правильно. При правильном отборе и анализе керна можно получить, в частности, данные о проницаемости всей призабойной зоны матрицы пласта и отдельных его прослоев. Эти данные в сочетании с результатами гидродинамических исследований скважин позволяют раздельно оценить проницаемости матрицы коллектора и проницаемость, обусловленную трещиноватостью, составить более правильное представление о действительной проницаемости призабойной зоны, ее изменениях в процессе работы скважин и об эффективной проницаемости. Изменения проницаемости призабойной зоны могут быть следствием изменения проницаемости матрицы коллектора или проницаемости, обусловленной трещиноватостью, или той и другой одновременно. Поэтому гидродинамические исследования скважин можно рассматривать лишь в качестве источника дополнительной информации, не исключающей и не заменяющей информацию, получаемую при анализе керна. То же относится и к геофизическим исследованиям скважин. Геофизические методы таят в себе большие потенциальные возможности, которые используются далеко не полно или неправильно из-за отсутствия необходимого сопоставления их результатов с результатами анализа керна и гидродинамических исследований.

Наиболее полно и обстоятельно различные свойства горных пород и содержащихся в них полезных ископаемых могут быть изучены лишь при комплексном использовании разнообразных методов исследования глубинных проб пород, жидкостей и газов в сочетании с гидродинамическими и геофизическими исследованиями.




[ 0 ] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94



Яндекс.Метрика