Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 [ 22 ] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

порядке: кальцит, кварц, полевой шпат, титапий, турмалин, циркон и пирит. Наибольшая растворимость кальцита и кварца в воде под давлением, по-видимому, и служит одной из предпосылок наибольшего распространения в цементе песчаников. Одновременно установлено, что при прочих равных условиях растворимость карбонатов в воде в 2 раза больше и процесс растворения протекает интенсивнее, чем для кварца. Вследствие этого при карбонатном цементе коллекторские свойства песчаников часто хуже, чем при кремнистом.

Исследования влияния цемента на коллекторские свойства песчаных коллекторов калинской свиты Азербайджана, выполненные Л. А. Буряковским и др. [75], показали, что даже при одном и том же процентном содержании цемента (30%) в случае карбонатной цементации пористость равна 5%, проницаемость 3 мД, а в случае глинистого цемента соответственно 15% и 30 мД. Согласно этим же исследованиям коллекторские свойства указанных пород при одной и той же цементации с увеличением глубины залегания ухудшаются вследствие высокой их глинистости, способствуюш,ей гравитационному уплотнению. С учетом роли температуры и всестороннего давления на растворимость минеральных солей в воде физическая сторона процесса новообразований и ухудшения коллекторских свойств пород может рассматриваться как результат изменения термодинамических условий, а именно понижения давления и температуры, вызванных геотектоническими процессами.

Разумеется, это далеко не исчерпывает всей совокупности и многообразия диагенетических и эпигенетических изменений пород. Так, указанные изменения могут происходить при одном лишь одностороннем давлении, которое испытывают частицы кластического материала под нагрузкой вышележаш,ей толш,и пород. Согласно принципу Риккиша [280] при одностороннем давлении р -j- Ар на частицу, превышаюш,ем давление р в окружаюш,ем растворе, в системе устанавливается концентрация насьпцения Ср+др выше, чем Ср-.

° Ср - RT *

где Fm - молекулярный объем кристаллического веш,ества.

Эта зависимость означает, что односторонне сжимаемый кристалл проявляет повышенную растворимость. Химический потенциал растворенных веш,еств более высок на поверхностях, подверженных одностороннему давлению, нежели на поверхностях, не испытываюш,их этого давления. Вследствие этого веш,ество, растворенное при избыточном давлении Ар, диффундирует в зону давления р и откладывается на поверхностях частиц, не подверженных одностороннему давлению. Таким образом происходит перераспределение веш,ества в породе с образованием аллохтонного цемента.

По-видимому, этим в основном и обусловлено образование гомогенных кварцевых песчаников с кремнистым цементом на различных глубинах, а также ухудшение коллекторских свойств пород с глубиной залегания. В связи с тем, что при одностороннем давлении



растворимость кальцита больше, чем кварца, наибольшее ухудшение коллекторских свойств пород логично ожидать при карбонатном цементе. Но ухудшение коллекторских свойств" пород в результате диа генетических процессов зависит не только от одностороннего и всестороннего давления, а и от множества других факторов, о которых уже упоминалось выше. Эти факторы в смысле воздействия на породу могут находиться в самых различных сочетаниях в зависимости от того, относится ли осадочный чехол к платформам, геосинклиналям или к предгорным прогибам. Поэтому ухудшение коллекторских свойств пород с глубиной залегания, строго говоря, не обязательно, несмотря на определенную тенденцию в зтом отношении, о которой упоминалось выше.

При известных условиях хорошие коллекторы нефти и газа возможны и на больших глубинах, хотя вероятность их нахождения,, по-видимому, меньше. Во всяком случае в настоящее время известны коллекторы нефти и газа, которые на глубине 4300 м имеют пористость 20% (Филмор, Калифорния), Ъ в Мексиканском заливе на глубине 7000 м встречены пористые углеводородсодержащие породы [269]. С учетом этого сейчас нет оснований для установления предельных глубин залегания коллекторов нефти и газа.

ОПРЕДЕЛЕНИЕ ЕМКОСТИ И РАСКРЫТИЯ ТРЕЩИН В КЕРНАХ

В лабораторной практике нередко возникает необходимость определить размеры естественных и искусственных трещин в кернах, например, при оценке их емкости, в исследованиях заиления механическими примесями, содержащимися в жидкостях, в исследованиях фильтрации жидкостей и газов и т. д. Но трещиноватость кернов, как правило, не адекватна трещиноватости коллекторов, из которых они отбираются. Трещины в кернах часто носят локальный характер и поэтому не, всегда участвуют в разработке нефтяных залежей, приуроченных к трещиноватым коллекторам. Трещины, влияющие на работу скважин и на промышленную разработку пласта, обычно керном не фиксируются, так как керн в процессе отбора распадается по этим трещинам. Поэтому судить о трещиноватости коллектора и тем более оценивать ее по трещиноватости керна или, что еще хуже, по шлифам, как это иногда рекомендуют [217], нет оснований. В большинстве случаев раскрытость трещин в кернах не превышает нескольких десятков микрон, а трещиноватость - аналог пористости - десятых долей процента. Определение емкости и раскрытости таких трещин объемным методом, т. е. путем насыщения исследуемого образца жидкостью, не обеспечивает получения достоверных данных, так как сама величина этих данных не выходит за пределы погрешности измерений.

С учетом этого обстоятельства нами [104] был разработан метод, основанный на исследовании фильтрации газа или гомогенной жидкости в трещиноватом или в пористо-трещиноватом образце керна. Применение этого метода предполагает, что направление трещин



в исследуемом образце породы совпадает с паправлепием потока, так как при ином расположении трещины в фильтрации пе участвуют.

Расход жидкости или газа Q через цилиндрический образец керна можно представить следующей формулой:

QI, (78)

где Q - расход жидкости или газа, см*/с; г - радиус торцевой поверхпости образца, см; к - проницаемость, см; Др - перепад давления, дин-см; р - абсолютная вязкость, дин-смс; I - длина образца, см.

Если вдоль оси того же образца создать искусственную трещину, расход через нее соответственно составит

я (79)

Отсюда расход через трещину будет равен

AQ = {k,-k). (80)

Расход жидкости через прямоугольную трещину можно представить также по Буссинеку в виде

где а - ширина трещины, см; Ъ - высота (раскрытость) трещины, см.

Приравнивая формулы (80) и (81), можно получить

bJnSb, (82)

Выражая ki к в дарси, г - через диаметр образца d и подставляя вместо я его значение, получим

Если трещина проходит через центральную часть исследуемого образца, а = d и тогда Ъ определится из выражения

bVd{kr\-k). (84)

Следовательно, чтобы определить высоту (раскрытость) трещины в керне, необходимо знать диаметр керна, его проницаемость до и после образования трещины и ее ширину, если она не проходит через центральную часть керна. Если в керне имеется несколько




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 [ 22 ] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94



Яндекс.Метрика