Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 [ 67 ] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Значительные изменения поверхностного натяжения нефти на различных поверхностях раздела в зависимости от давления и температуры в пластовых условиях необходимо учитывать при оценке капиллярных процессов в пористой среде. На границе с газом значение капиллярных давлений может быть меньше, чем это наблюдается в лабораторных условиях при низких давлениях. На разделе нефть - вода с ростом давления интенсивность капиллярных процессов может возрастать.

Как уже отмечалось, весьма ценные данные о нефти и ее свойствах можно получить при специальных измерениях поверхностного натяжения. Например, по поверхностному натяжению на границе с воздухом воднощелочных вытяжек из нефти, оценивают содержание примесей в ней кислотного характера, которые омыляются при контакте нефти со щелочной водой и переходят в воду. Такие определения, как мы увидим впоследствии, имеют большое значение для оценки нефтевымывающих свойств воды.

Для определения характеристики омыляемой части нефти обычно готовят воднощелочные вытяжки нутем настаивания нефти в контакте с равными объемами растворов NaOH различной концентрации.

§ 3. СМАЧИВАНИЕ И КРАЕВОЙ УГОЛ. РАБОТА АДГЕЗИИ. ТЕПЛОТА СМАЧИВАНИЯ

Величину поверхностного натяжения твердого тела непосредственно измерить трудно. Поэтому для исследования процессов взаимодействия твердых тел с жидкостями и газом пользуются косвен-

ными методами изучения по-

верхностных явлений, протекающих на контактах между твердыми и жидкими телами. К таким методам относятся измерение работы адгезии b/T /, исследование теплоты смачи-

вания и углов избиратель-

Рис. VI.4. Форма капли, обусловленная него смачивания и т. д. поверхностными натяжениями на различ- Если на поверхность

ных границах соприкасающихся фаз. твердого тела нанести каплю жидкости, то под действием молекулярных сил она растекается по поверхности твердого тела и принимает форму линзы (рис. VI.4).

Угол 9, образованный касательной к капле в точках ее периметра, зависит от поверхностных натяжений 0],з, а! и Og.s на разделах фаз 1-3, 1-2 и 2-3. (В нефтяной литературе принято условно обозначать цифрой 1 водную фазу, цифрой 2 углеводородную жид-


Адгезия измеряется работой, которую надо затратить, чтобы оторвать твердое тело от жидкости в направлении нормали к поверхности раздела.



кость или газ и цифрой 3 твердое тело.) Угол всегда отсчитывают от касательной в сторону фазы 1.

Из условия равновесия векторов (предполагая, что краевой угол 0 отвечает термодинамическому равновесию) получим

откуда

(3,2 = (3.1 + 1.2 cos 9, (VI. 2)

cos6= "«-*i В. (VI.3)

В ЭТИХ уравнениях величины 03,2 и Og практически неизвестны. Поэтому о соотношении поверхностных натяжений Одд и Og 2 (т. е. о процессах, происходящих на границе твердого тела с другими фазами) судят по углу 0, который служит мерой смачивания жидкостями поверхности твердого тела и, следовательно, представляет косвенную характеристику взаимодействия твердого тела с другими фазами.

Величина 0, если исключить влияние силы тяжести, не зависит от размеров капли и определяется лишь молекулярными свойствами поверхности твердого тела и соприкасающихся фаз. Поэтому, исходя из теории поверхностных явлений, можно установить связь краевого угла смачивания 0 с поверхностным натяжением между твердым телом и жидкостью. Например, поверхность должна лучше смачиваться той жидкостью, которая обладает меньшей разностью полярностей менлду твердым телом и жидкостью, т. е. меньшей величиной поверхностного натяжения на их разделе (рис. VI.4). Бысокополярные жидкости, т. е. жидкости с высоким поверхностным иатяжениедг, хуже смачивают твердую поверхность, чем н<идкости лгалополярпые (т. е. обладающие меньшим поверхностным натяжением). Например, такая высокополярная жидкость, как ртуть, смачивает только некоторые металлы; вода - жидкость, менее полярная, чем ртуть, поэтому вода смачивает, кроме металлов, многие минералы и кристаллические соли; малополярные масла смачивают на границе с воздухом все известные твердые тела.

По величине угла избирательного смачивания, образующегося при контакте воды, нефти и породы, наряду с другими параметрами можно судить о качестве вод и их отмывающей и нефтевымывающей способности. Лучше отмывают нефть воды, хорошо смачивающие породу. Поэтому изучению явлений смачивания в нефтепромысловом деле уделяется очень большое внимание.

Величина угла смачивания зависит от множества факторов: механического строения поверхности, адсорбции на ней воздуха и других веществ, от ее загрязнения, электрического заряда и т. д.

Особо большое влияние на угол смачивания оказывают процессы адсорбции в связи с изменением химического строения поверхности твердого тела. Если при этом к поверхности ориентирована неполярная углеводородная цепь поверхностно-активных



веществ, то гидрофильные радикалы (-ОН, -СООН, -СО, -СОН и др.), обращенные в сторону жидкости, способствуют смачиванию поверхности водой. При обратной ориентации поверхность гидро-фобизуется.

Интересно отметить, что радикалы, свободно ориентировавшиеся на поверхности жидкости, в зависимости от свойств фаз сохраняют эту ориентировку при быстром переходе жидкости в твердую фазу. В опытах Дево, например, воск и парафин, расплавленные и охлажденные на воздухе, давали гидрофобную поверхность, а охлажденные на границе с водой - гидрофильную. Точно также поверхность стеариновой кислоты, полученная на границе с воздухом, гидрофобна, а полученная на границе с водой и стеклом - гидрофильна.

Адсорбция полярных молекул на поверхности горных пород имеет большое значение при избирательном смачивании их водой и нефтью. Кварц, известняк и другие минералы, которым в основном представлены нефтесодержащие породы, по своей природе гидрофильны. Несмотря на это, все нефтесодержащие породы в значительной степени гидрофобизованы нефтью и часто очень плохо смачиваются водой или же обладают иногда, по-видимому, устойчивой гидрофобной поверхностью.

С процессами адсорбции тесно связаны явления статического гистерезиса смачивания, заключающиеся в задержке установления равновесного значения смачивания вследствие трения при перемещении периметра капли по поверхности твердого тела. Мерой статического гистерезиса смачивания может служить разность косинусов углов АВ = 52,1 - -1,2 - см. формулу (VT3). Эту формулу получаем при различном порядке смачивания твердой поверхности жидкостями 1 и 2. В присутствии адсорбционного слоя статический гистерезис смачивания резко возрастает.

В соответствии с изменением молекулярно-поверхностных характеристик жидкостей на различных поверхностях раздела с увеличением давления и температуры изменяется также угол смачивания. По результатам исследований Н. Д. Таирова и М. М. Кусакова краевой угол избирательного смачивания кварца растворами нефти на границе с водой при насыщении углеводородной жидкости и воды азотом (т. е. малорастворимым газом) не зависит от давления. Аналогичная закономерность наблюдается в данных условиях и для поверхностного натяжения нефти на границе с водой.

При растворении в нефти углеводородного газа, обладающего значительно лучшей растворимостью, чем азот, в нефти, с одной стороны, увеличивается относительное содержание неполярной части; это сопровождается уменьшением адсорбции и гидрофобизации поверхности. В результате вода лучше избирательно смачивает кварц при контакте с нефтью. С другой стороны, адсорбция поверхностно-активных веществ на поверхности породы увеличивает угол смачивания 6 при повышении давления. В совокупности зависимость 6 = / (р) с ростом давления от преобладания того пли иного




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 [ 67 ] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100



Яндекс.Метрика