Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 [ 75 ] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Допустим, что начальные пластовые условия соответствуют точке А, а конечные - точке В. Для определения температурной кривой дроссельного процесса проводим линию Н = const от А до В. Точки пересечения этой линии с кривыми Гпр = const дают координаты Т ш р точек зависимости Т - f (р) для данного дроссельного процесса. Величины дифференциальных коэффициентов Джоуля - Томсона е при различных р находятся как производные функции Т = f (р) при данном значении р. Значение 8 обычно увеличивается по мере снижения давления. Интегральный коэффициент Джоуля - Томсона е опреде.пяется по формуле

С е dp

где Рп Рз - начальные и конечные давления.

Предельное изменение температуры ДГ вследствие дроссельного эффекта определяется по формуле (УП.26).

Опыт показывает, что при высоких пластовых давлениях (20- 30 МПа) без больших погрешностей можно пользоваться средними (интегральными) коэффициентами е, соответствуюш,ими интервалу давлений от 5 до 10 МПа [49].

Для углеводородных газов значения дифференциальных коэффициентов е находятся в пределах от -3° С/МПа до -6° С/МПа.

Дроссельный эффект используется в промысловой практике для установления зон притока нефти, воды и газа. При поступлении нефти и воды наблюдается разогрев работающего интервала, а при поступлении газа - охлаждение. Различие в величинах е для воды, нефти и газа позволяет по температурным изменениям призабойной зоны отбить в пласте также и границы перехода нефть - вода, нефть - газ, вода - газ.

Тепловые явления в пластах и в скважинах положены в основу новых методов исследования строения залежей и коллекторских свойств пласта, которые быстро развиваются и совершенствуются .

§ 5. ОБЩАЯ СХЕМА ВЫТЕСНЕНИЯ ИЗ ПЛАСТА НЕФТИ ВОДОЙ И ГАЗОМ

В природных условиях наиболее распространены залежи с напорными режимами (или эти режимы работы воспроизводятся и поддерживаются искусственно путем нагнетания в залежь воды или газа). Нефть из таких залежей вытесняется внешними агентами - краевой или нагнетаемой водой, свободным газом газовой шапки или газом, закачиваемым в пласт с поверхности. Несмотря на существенные раз-

Балакирев Ю. А. Определение параметров пласта по кривым изменения забойной температуры в скважине. Тематический научно-технический сб. «Опыт проведения промыслово-исследоватсльских работ с целью контроля за разработкой нефтяных месторождений». М., ВНИИОЭНГ, 1966.



личия в отдельных деталях процесса, общая качественная схема вытеснения нефти водой и газом имеет много общего.

Нефть и вытесняющий ее агент движутся вместе и одновременно в пористой среде. Однако полного вытеснения нефти замещающими ее агентами никогда не происходит, так как ни газ, ни вода не действуют на нефть как «поршни». Вследствие неоднородности размеров пор в процессе замещения вытесняющая жидкость или газ с меньшей вязкостью неизбежно опережает нефть. При этом насыщение породы различными фазами позади водо-нефтяного или газо-нефтяного контакта, а следовательно, и эффективная проницаемость для нефти и вытесняющих агентов непрерывно изменяются. Увеличение водонасы-щенностн до 50-60%, например, влечет за собой прогрессирующий


Условный, контур вытеснения

Расстояние от начальной линии заводнения

Рис, VII.4. Изменение нефтеводонасып],енности по длине пласта при вытеснении нефти водой.

рост количества воды в потоке в связи с возрастанием эффективной проницаемости породы для воды. При этом нефть уже не вытесняется из пор, а скорее увлекается струей воды. Таким образом, по длине пласта образуется несколько зон с различной водонефтенасы-щенностью. Типичная картина изменения водонасыщенности по длине пласта в один из моментов времени при вытеснении нефти водой приведена на рис. Vn.4. Эта схема процесса представляется всеми исследователями как суммарный результат проявления капиллярных и гидродинамических сил.

Водонасыщенность пласта уменьшается от максимального значения Ршах соответствующего конечной нефтеотдаче на начальной линии нагнетания воды, до значения насыщенности погребенной воды Рп. При этом в пласте можно наметить три зоны (I, II и III). В первой из них, где водонасыщенность изменяется от р„ах ДО Рф на условном контуре вытеснения плавно понижается водонасыщенность по направлению к нефтенасыщенной части пласта. Этот участок характеризует зону водонефтяной смеси, в которой постепенно вымывается нефть. Второй участок (область II) с большим уклоном кривой представляет собой переходную зону от области I вымывания нефти к области III



движения чистой нефти. Эту зону принято называть стабилизированной. Длина ее в естественных условиях может достигать нескольких метров.

Аналогичное распределение газа и нефти в пласте образуется при вытеснении нефти газом. Разница главным образом количественная в связи с различной вязкостью воды и газа.

Так, вследствие небольшой вязкости газа «поршневое» вытеснение им нефти может происходить только при газонасыщенности породы, не превышающей 15% от объема пор. При росте газонасыщенности в потоке будет преобладать газ, и механизм вытеснения нефти будет заменяться механизмом увлечения ее струей газа. При газопасы-щенности сл35% двигаться в пласте будет только один газ.

Кроме свободного газа газовой шапки, нефть из пласта может вытесняться также газом, выделяющимся из раствора.

Иногда растворенный газ является единственным источником энергии в залежи. Энергия растворенного в нефти газа проявляется всегда, если давление в залежи падает ниже точки насыщения.

Визуальные наблюдения за процессом выделения газа в тонких прозрачных пористых средах показывают, что даже при интенсивном снижении давления сразу большое число пузырьков не образуется. Иногда на десятки тысяч пор приходится один пузырек, который увеличивается за счет диффузии газа. При этом уменьшается степень перенасыщения нефти вблизи расширяющегося пузырька.

Свободный газ со снижением давления вначале выделяется у твердой поверхности, так как затрачивается работа, необходимая для образования пузырька у стенки (за исключением случая полного смачивания поверхности твердого тела жидкостью), меньшая, чем необходимо для его образования в свободном пространстве жидкости. После образования пузырька газонасыщенные структуры растут в пористой среде в виде длинных узких цепочек.

Первые газовые ячейки появляются в малопроницаемой части пористой среды, затем они вырастают в длинную узкую газонасыщенную структуру. После достижения ею линзы с высокой проницаемостью рост газовых ячеек преимущественно продолжается в этой свободной зоне, потому что капиллярное давление менисков препятствует движению газа в зоны с меньшим сечением капиллярных каналов.

Вначале газовые пузырьки располагаются далеко друг от друга, но, постепенно расширяясь, газонасыщенные участки соединяются друг с другом. После образования пузырьков газа они вытесняют нефть из пласта в том объеме, который занимают в поровом пространстве. Такой эффективный процесс вытеснения продолжается до тех пор, пока газонасыщенные участки еще перемеживаются нефтью (т. е. до образования сплошных газонасыщенных участков). С этого момента эффективность вытеснения нефти газом понижается по мере увеличения газонасыщенности пор пласта, так как малая вязкость газа позволяет ему перемещаться к скважинам быстрее нефти в зоны пониженного давления (к забоям) по газонасыщенным участкам.




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 [ 75 ] 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100



Яндекс.Метрика