Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 [ 70 ] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

Для измерения угла смачивания, образующегося на границе различных сред при движении раздела фаз, предложено много методов.

По одному из них измеряют краевой угол смачивания, образуемый поверхностью жидкости и погруженной в нее наклонной пластинкой минерала при погружении или поднятии последней с соответствующей скоростью. При другом способе измеряются краевые углы натекания и оттекания, образуемые каплей жидкости на наклонной твердой поверхности. В третьем динамика изменения угла смачивания создается путем отсасывания капиллярной пипеткой нефти или воды из капли. При уменьшении объема капли нефти возникает наступающий угол смачивания, при увеличении ее - отступающий. Наконец, углы смачивания в динамике можно измерить при медленном движении мениска в капилляре.


Рис. VI.6. Схема одного из вариантов прибора 3. В. Волковой.

Упомянутые методы измерения кинетических углов избирательного смачивания не воспроизводят пластовых условий и их нельзя применять для оценки краевых углов смачивания, возникающих при движении водо-нефтяного контакта в пористой среде.

Некоторое представление о смачивающих свойствах вод и природе поверхности поровых каналов можно получить, измеряя скорость пропитывания пористой среды жидкостью или капиллярного вытеснения этой жидкости другой. Для изучения процессов капиллярного пропитывания и взаимного вытеснения нефти и воды обьгано используются приборы 3. В. Волковой (рис. VI.6).

В стеклянную трубку 3 при помощи резинового уплотнения 5 вставляют изучаемый песчаник 4, насыщенный остаточной водой и нефтью. Капилляр 1, наполненный вытесняющей жидкостью до конца расширенной части, соединяется с трубкой 3 на шлифе 7. Пространство между торцом образца и пробкой капилляра сообщается с атмосферой при помощи отвода с пробкой 2. На трубке 1 нанесены деления, по которым можно определить количество вошедшей в керн под действием капиллярных сил воды в различные моменты времени. При изучении процесса капиллярного вытеснения нефти трубка наполняется водой и после соединения шлифа 7 открываются пробка 2 и кран 6. Прибор слегка наклоняют и после того, как жидкость достигает торца песчаника, пробка 2 закрывается, прибор вновь устанавливают в горизонтальное положение и проводят наблюдение за процессом капиллярного вытеснения нефти водой.



Аналогичные приборы созданы также для изучения процессов капиллярного вытеснения при высоких давлениях. Пористую среду, состоящую из капилляров различных диаметров с большим разнообразием геометрических форм, можно заменить идеальным грунтом со средним радиусом пор. Тогда зависимость длины смоченного слоя породы I от времени t только под действием капиллярных сил можно приближенно оценить по формуле 3. В. Волковой

plrt, (VI. 7)

где I - длина смоченного слоя породы к моменту времени t; о - поверхностное натяжение; 0 - угол смачивания; г - средний «радиус» пор; р. - вязкость жидкости.

Уравнение (VI.7) действительно для пропитывания пористой среды жидкостью (вязкость воздуха прхшята равной нулю).

При вытеснении из породы менее смачивающей фазы лучше избирательно смачивающей жидкостью уравнение зависимости I от t для горизонтального пропитывания имеет вид:

/2 , 2?ofti pc0s9

Где /о - общая длина пористой среды; р. - вязкость вытесняющей жидкости; Pi - вязкость вытесняемой жидкости.

Уравнение (VI.8), основанное на классических законах капиллярности, действительно только для единичных капилляров, так как не учитывает специфических особенностей строения и свойств пористых сред и многообразие явлений, происходящих в процессе их пропитывания.

Основные препятствия, затрудняющие использование уравнений 3. В. Волковой для расчета углов избирательного смачивания пористых сред по данны.м капиллярного пропитывания, состоят в образовании в поровом пространстве смесей жидкостей, что не учитывается уравнением (VJ.8), а также в трудности определения параметра г, характеризующего геометрию порового пространства образца и одновременно свойства жидкостей. Кроме того, уравнение (VI.8) не учитывает зависимость угла смачивания и поверхностного натяжения от скорости движения мениска.

Следует отметить, что на результаты пропитывания образца оказывают также некоторое влияние специфические особенности строения прибора, используемого для изучения процесса (сопротивление капилляра прибора Волковой, степень его смачиваемости

Строго говоря, величина г зависит при пропитывании также от свойств жидкости, поэтому г в формуле (VI.7) можно лпшь условно принимать за средний радиус пор.



11 т. д.). Следовательно, необходимо в процессе опыта также учесть еще и «постоянную» прибора. Поэтому уравнения 3. В. Волковой можно использовать для изучения свойств пористых сред, лишь введя поправочный коэффициент а, учитывающий отклонение процесса пропитывания реальных образцов от теоретического его хода, описываемого уравнением (VI.8):

P + Jl = a rt. (VI.9)

Однако уравнение (VI.9), описывающее процесс пропитывания, оказывается еще более неопределенным вследствие появления коэффициента а.

Затруднения при использовании уравнений (VI.8) и (VI.9) можно в какой-то степени устранить, если для приближенных оценок свойств внутренних поверхностей пористых сред применить «метод двойного опыта». Сущность этого метода заключается в том, что вначале с исследуемой пористой средой проводится опыт по капиллярному пропитыванию в условиях, когда угол смачивания может считаться известным. Например, можно принять угол смачивания приблизительно равным 30° при пропитывании водой сухих или насыщенных неполярными углеводородными жидкостями искусственных гидрофильных образцов, изготовленных спеканием в муфельных печах или сцементированных жидким стеклом или другими гидрофильными цементами.

У отмытых от нефти естественных гидрофобных кернов угол смачивания также можно принять равным 30° при пропитывании их чистыми углеводородными жидкостями.

Результаты первого опыта позволяют оценить неизвестное произведение аг. Далее проводится второй основной опыт по капиллярному вытеснению нефти из того же или смежного образца водой, смачивающие свойства которого необходимо определить. Угол смачивания по результатам второго опыта можно рассчитать по уравнению (VI.9), если предположить, что величина аг, определенная из данных первого опыта, осталась прежней.

Равенство «гидравлических радиусов» в обоих опытах более правдоподобно для начальных условий вытеснения при 0. Следовательно, лучше судить о смачивающих свойствах воды не по длине смоченного слоя I к моменту времени t, а, например, по скорости капиллярного проникновения воды в образцы в начальный

момент времени у<->о которая определяется по углу наклона

касательной к кривой I = f (t) нри 0.

Продифференцировав уравнение (VI.9) для условий проведения обоих опытов, имеем




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 [ 70 ] 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100



Яндекс.Метрика