Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 [ 99 ] 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

клонения от расчетной геометрии внутренней поверхности отвода, поэтому необходима индивидуальная подгонка по месту вставных сопел. Для уменьшения объема подгоночных работ сопряжения криволинейных поверхностей указанных сопел с внутренними поверхностями крышки и языка осуществлялись по трем площадкам на вставках. Однако удовлетворительной подгонки для обеспечения плотного прилегания наружных поверхностей входных участков для вставки корпуса и для вставки крышки во избежание разветвления потока добиться не удалось. Это объясняется сложностью конфигурации проточной части спиральной улитки, большой длиной вставок, а также горизонтальным разъемом корпуса и крышки насоса. Следствием этого явилось образование щелей по боковым поверхностям профиля улитки, что привело к увеличению числа поверхностей трения, образованию вихревых областей в потоке и соответственно снижению КПД.

Испытания насоса НМ Ю ооо-21о с ротором на о,5 Qном и с объемными вставками в диапазоне подач 471 о-61 о5 м3/ч показали, что их применение, по сравнению с направляющим аппаратом, менее эффективно. Однако индивидуальная, более тщательная подгонка объемных вставок к корпусу насоса позволяет получить лучшие результаты.

Эффективность от применения объемных вставок может быть получена при их изготовлении заводом-изготовителем насосов и поставке в комплекте с насосами, что может быть реализовано лишь при поставке новых насосов.

Промышленное внедрение направляющих аппаратов подтвердило целесообразность их применения для снижения энергопотребления, уменьшения вибрации и шума насоса НМ 1 о ооо-21 о, эксплуатируемого на подачах менее о,7 от номинальной.

Опыт их применения указывает на необходимость распространения результатов работы на магистральные насосы других типоразмеров.

12.4. ДОПУСТИМЫЙ КАВИТАЦИОННЫЙ ЗАПАС НАСОСА

Всасывающая способность центробежных насосов магистральных нефтепроводов ограничивается кавитацией.

Условием надежной эксплуатации насосных агрегатов является отсутствие кавитации на различных режимах его работы. С этой целью нормальные условия работы насосного оборудо-302



вания обеспечиваются созданием на входе в насос избытка удельной энергии жидкости над давлением насыщенных ее паров.

Явление кавитации заключается в образовании в жидкости парогазовых пузырьков в тех участках потока, где местное давление понижалось, достигает критического значения.

Процесс кавитации аналогичен кипению жидкости, поэтому в качестве критического давления, нри котором возникает кавитация, обычно принимают давление насыщенных паров перекачиваемой жидкости при данной температуре. Падение давления ниже давления, соответствующего температуре парообразования, приводит к различной степени перегрева жидкости в зависимости от ее температуры и физических свойств. Перегрев высвобождает необходимое для парообразования тепло.

Понижение местного давления ниже давления, соответствующего началу кавитации в проточной части центробежного насоса, может происходить в результате добавочных потерь на входном участке насоса, увеличения скорости жидкости вследствие увеличения числа оборотов, отрыва или сжатия потока.

При кавитации нарушается нормальная работа центробежных насосов. Это происходит потому, что часть объема подаваемого насосом, становится заполненной нарами жидкости, в результате чего происходит падение напора, уменьшение расхода перекачиваемой жидкости, снижение КПД, увеличение вибраций и шума. Кроме того, нри попадании образовавшейся при кавитации двухфазной жидкости в область повышенного давления происходит конденсация и заполнение парогазовых объемов жидкостью с большой скоростью, что приводит к явлению местного гидравлического удара.

Совокупность местных гидравлических ударов в момент завершения конденсации паровых объемов, находящихся на но-верхности твердого тела, приводит к эрозионному разрушению металла.

Нормальные условия работы центробежных насосов мот быть обеспечены созданием на входе в насос избытка удельной энергии над давлением насыщенных паров подаваемой жидкости. Так, например, сезонные центробежные насосы магистральных нефтепроводов имеют подпор, который создается вспомогательным подпорным насосом или передается нерека-чиваемой жидкостью с предыдущей насосной станции. В свою очередь, условия бескавитационной работы подпорных насосов могут быть обеспечены приближением насосной к резервуар-ному парку, использованием особенностей рельефа местности,



их заглублением. Указанные меры предупреждения кавитации обычно используются в процессе проектирования.

На действующем нефтепроводе бескавитационные условия работы насосов могут быть обеспечены применением пред-включенных шнеков на входе в рабочее колесо, увеличением диаметра всасывающего трубопровода или подключением дополнительных параллельных всасывающих линий, ограничением минимального допустимого уровня перекачиваемой жидкости в резервуарах, снижением производительности насосной станции. Однако эти меры связаны с дополнительными затратами. Например, на головных нефтеперекачивающих станциях магистральных нефтепроводов ухудшение всасывающей способности насосов связано с необходимостью дополнительного увеличения минимально допустимого уровня перекачиваемой жидкости в резервуарах ("мертвый" остаток). Величина этого увеличения непосредственно связана с кавитационным запасом подпорного насоса и для заданного режима перекачки может быть вычислена.

Определение минимального давления на входе в подпорные насосы и величины уставок на входе магистральных центробежных насосов базируется на характеристиках насоса и свойствах перекачиваемой жидкости.

Введем следующие обозначения:

Лвх min, Рвх min - соответственно, минимальные напор и давление на входе в насос, гарантирующие его бескавитационную работу;

hS - напор, определяемый давлением насыщенных паров при соотношении паровой и жидкой фаз, близком к нулю; а -коэффициент кавитационного запаса;

АЯкр - термодинамическая поправка, учитывающая влияние термодинамических свойств перекачиваемой жидкости;

5hv - поправка на влияние вязкости жидкости;

Сд.п - коэффициент гидравлического сопротивления на входе в насос;

8 - критерий тепловой кавитации;

т - коэффициент температурной неравновесности фазовых переходов;

Ra - критерий фазового перехода

9 - критерий парообразования;

wмк - скорость жидкости в межлопаточном канале рабочего колеса;

"вх" - относится к параметрам жидкости на входе в насос;

"н" и "в" - относятся соответственно к параметрам пара, жидкости, нефти и воды. 304




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 [ 99 ] 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155



Яндекс.Метрика