Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 [ 155 ] 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

поверхности. Наиболее часто применяют первые два способа обработки, а к травлению прибегают только в случае необходимости изменения структуры поверхностного слоя.

36.3.2. Подготовка металлов к сварке

Химические активные металлы (s- и р-элемеиты) и сплавы на их основе перед соединением со стеклом, ситаллом и керамикой тщательно очищаются от посторонних загрязнений, а также от оксидов, присутствующих на их поверхности. Переходные металлы (d-элементы) и сплавы на их основе, как правило, перед соединением со стеклом и керамикой проходят специальную обработку, связанную с созданием иа их поверхности тонких слоев оксидов низшей валентности [I, 3, 6].


Рис. 36.1 Основные типы металлостеклянных и металлокерамических соединений

36.3.3. Режимы Сварки

при разработке технологии ДС стекла и керамики с металлами щироко используют промежуточные прокладки. Назначение прокладок главным образом сводится к снижению энергетических параметров сварки, остаточных напряжений в зоне соединения и активации соединяемых поверхностей. Некоторые режимы диффузионной сварки стекла и керамики с металлами приведены в табл. 36.7.

36.3.4. Особенности конструкции металлостеклянных и металлокерамических узлов

Конструкции узлов металлов с неметаллами разделяют на три группы (рис. 36.1).

I. Соединения, в которых металл охватывает стекло или керамику, при этом ТКЛР металла имеет большее значение, чем



неметалла. Такие соединения называют охватывающими (рис. 36.1, а-в).

2. Соединения, в которых керамика или стекло охватывают металлическую деталь, называют внутренними спаями или соединениями (рис. 36.1, г).

3. Соединения, когда металлическая деталь сочленяется с неметаллической по плоскости торца; поэтому они и называются плоскими или торцовыми соединениями (рис. 36.1, д - ж).

Возникновение больших и опасных напряжений в таких соединениях компенсируют следующими способами: использованием металлов небольших толщин и возможно меньшего диаметра; применением для соединений пластичных материалов, позволяющих несколько ослаблять напряжения; использованием более низких температур при получении соединения, а также применением медленного охлаждения в процессе сварки с чередованием промежуточных отжигов.

Глав а 37. ПЛАСТМАССЫ (Зайцев К. И.)

37.1. Состав и свойства

37.1.1. Получение пластмасс

Пластмассы - это материалы, полученные на основе синтетических нли естественных полимеров (смол). Синтезируются полимеры путем полимеризации или поликондеисацни мономеров в присутствии катализаторов при строго определенных температурных режимах и давлениях.

В полимер с различной целью могут вводиться наполнители, стабилизаторы, пигменты, могут составляться композиции с добавкой органических и неорганических волокон, сеток и тканей.

Таким образом, пластмассы в большинстве случаев являются многокомпонентными смесями и композиционными материалами, у которых технологические свойства, в том числе и свариваемость, в основном определяются свойствами полимера.

В зависимости от поведения полимера при нагревании различают два вида пластмасс - термопласты, материалы, которые могут многократно нагреваться и переходить прн этом из твердого в вязкотекучее состояние, и реактопласты, которые могут претерпевать этот процесс лишь однократно.

37.1.2. Особенности строения

Пластмассы (полимеры) состоят из макромолекул, в которых более или менее регулярно чередуется большое число одинаковых или неодинаковых атомных группировок, соеднненных химическими связями в длинные цепи, по форме которых различают линейные полимеры, разветвленные и сетчато-пространственные.

По составу макромолекул полимеры делятся на три класса: 1) карбоцепные, основные цепи которых построены только из углеродных атомов;



2) гетероцепные, в основных цепях которых, кроме атомов углерода, содержатся атомы кислорода, азота, серы;

3) элементоорганические полимеры, содержащие в основных цепях атомы кремния, бора, алюминия, титана н других элементов.

Макромолекулы обладают гибкостью и способны изменять форму под влиянием теплового движения их звеньев или электрического поля. Это свойство Связано с внутренним вращением отдельных частей молекулы относительно друг друга. Не перемещаясь в пространстве, каждая макромолекула находится в непрерывном движении, которое выражается в смене ее конформаций.

Гибкость макромолекул характеризует величина сегмента, т. е. число звеньев в ней, которые в условиях данного конкретного воздействия на полимер проявляют себя как кинетически самостоятельные единицы, например в поле ТВЧ как диполи. По реакции к внешним электрическим полям различают полярные (ПЭ, ПП) и неполярные (ПВХ, полиаксилонитрнл) полимеры. Между макромолекулами действуют силы притяжения, вызванные ваи-дер-ваальсовым взаимодействием, а также водородными связями, ионным взаимодействием. Силы притяжения проявляются при сближении макромолекул на 0,3-0,4 нм.

Полярные и неполярные полимеры (пластмассы) между собой несовместимы- между их макромолекулами не возникает взаимодействия (притяжения), т. е. они между собой не свариваются.

37.1.3. Надмолекулярная структура, ориентация

По структуре различают два вида пластмасс - кристаллические и аморфные. В кристаллических в отличие от аморфных наблюдается не только ближний, но и дальний порядок. Прн переходе нз вязкотекучего состояния в твердое макромолекулы кристаллических полимеров образуют упорядоченные ассоциации-кристаллиты преимущественно в виде сферолитов (рнс, 37.1). Чем меньше скорость охлаждения расплава термопласта, тем крупнее вырастают сферолиты. Однако и в кристаллических полимерах всегда остаются аморфные участки. Изменяя скорость охлаждения, можно регулировать структуру, а следовательно, и свойства сварного соединения.

Резкое различие продольных и поперечных размеров макромолекул приводит к возможности существования специфического для полимеров ориентированного состояния. Оно характеризуется расположением осей цепных макромолекул преимущественно вдоль одного направления, что приводит к проявлению анизотропии свойств изделия из пластмассы. Получение ориентированных пластмасс осуществляется путем их одноосной (5-10-кратной) вытяжки при комнатной или повышенной температуре. Однако прн нагреве (в том числе и при сварке) эффект ориентации снижается или исчезает, так как макромолекулы вновь принимают термодинамически наиболее вероятные конфигурации (конформаций) благодаря энтропийной упругости, обусловленной движением сегментов.

Рис. 37.1. Фрагмент сферолигной структуры кристаллического термопласта (полипропилена)





0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 [ 155 ] 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170



Яндекс.Метрика