Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 [ 167 ] 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

ЧАСТЬ ТЕПЛОВЫЕ ЧЕТВЕРТАЯ ПРОЦЕССЫ

ГММ HI ТРУБЧАТЫЕ ПЕЧИ

Трубчатая печь является аппаратом, предназначенным для передачи нагреваемому продукту тепла, выделяющегося при сжигании топлива в топочной камере печи.

Трубчатые печи широко распространены в нефтегазоперерабатывающей, нефтехимической, коксохимической и других отраслях промышленности, являются составной частью многих установок и применяются в различных технологических процессах (перегонка нефти, мазута, пиролиз, каталитический крекинг, риформинг, гидроочистка, очистка масел и др).

Существуют различные конструкции трубчатых печей, отличающихся способом передачи тепла, количеством и формой топочных камер, числом секций (камер) в зоне радиации, относительным расположением осей факела и труб, способом сжигания топлива, типом облучения труб, числом потоков нагреваемого продукта, расположением конвекционной камеры относительно радиантной, длиной радиантных и конвекционных труб.

Основными характеристиками трубчатых печей являются производительность печи, полезная тепловая нагрузка, теплонапряженность поверхности нагрева и коэффициент полезного действия печи.

в промышленности применяют трубчатые печи с поверхностью нагрева радиантных труб 15 - 2000 м. Теплопроизводительность трубчатых печей различных конструкций изменяется от 0,12 до 240 МВт, а производительность по нагреваемой среде достигает 810 кг/ч. Температура нагреваемой среды на входе и выходе из печи в зависимости от технологического процесса изменяется в диапазоне от 70 до 900 °С, а давление - от 0,1 до 30 МПа. Для трубчатых печей КПД колеблется в пределах от 0,65 до 0,85.

ТЕПЛООБМЕН В ТРУБЧАТОЙ ПЕЧИ

Трубчатая печь имеет камеры радиации и конвекции. В камере радиации (топочной камере), где сжигается топливо, размещена ра-диантная поверхность (экран), поглощающая лучистое тепло в основном за счет радиации.

В камере конвекции расположены конвекционные трубы, воспринимающие тепло главным образом при соприкосновении дымовых газов с поверхностью нагрева путем конвекции.

Нагреваемый продукт в печи последовательно проходит через конвекционные и радиантные трубы, поглощая тепло. Обычно радиантная



поверхность воспринимает большую часть тепла, выделяемого в печи при сгорании топлива.

Лучистое тепло эффективно передается при охлаждении дымовых газов до 1000-1200 К. Снижение температуры дымовых газов до более низких значений часто бывает неоправданным, так как при этом радиантная поверхность работает с пониженной теплонапряженностью поверхности нагрева и требуется значительно увеличить поверхность радиантных труб. Эффективность теплопередачи конвекцией в меньшей степени зависит от температуры дымовых газов. Конвекционная поверхность использует тепло дымовых газов и может обеспечить их охлаждение до температуры, при которой значение коэффициента полезного действия аппарата будет экономически оправданным.

Если наличие конвекционной поверхности для нагрева сырья не является обязательным или размеры этой поверхности могут быть существенно уменьшены, то тепло дымовых газов может быть использовано для иных целей, например для подогрева воздуха или производства водяного пара. При небольшой производительности иногда применяют печи без конвекционной поверхности, более простые в конструктивном отношении, но обладающие невысоким коэффициентом полезного действия.

Рассмотрим механизм процесса передачи тепла в печи, состоящей из двух камер с настильным пламенем. Характерной особенностью этой печи является наклонное расположение в низу печи форсунок (горелок), обеспечивающих соприкосновение факела с поверхностью стены, размещенной в середине камеры радиации (рис. XXI-1).

В топочную камеру этой печи при помощи форсунки вводится распыленное топливо, а также необходимый для горения нагретый или холодный воздух. Высокая степень дисперсности топлива обеспечивает его интенсивное перемешивание с воздухом и более эффективное горение.

Соприкосновение факела с поверхностью настильной стены обусловливает повышение ее температуры; излучение происходит не только от факела, но и от раскаленной стены. Тепло, выделенное при сгорании топлива, расходуется на повышение температуры дымовых газов и частиц торящего топлива; последние раскаляются и образуют светящийся факел.

Температура, размер и конфигурация факела зависят от многих факторов и, в частности, от температуры и количества воздуха, подаваемого для горения топлива, способа подвода воздуха, конструкции и нагрузки форсунки, теплотворной способности топлива, расхода форсуночного пара, размера радиантной поверхности (степени экранирования топки) и др.

При повышении температуры воздуха увеличивается температура факела, повышается скорость торения и сокращаются размеры факела. Размеры факела уменьшаются и при увеличении (до известного предела) количества воздуха, поступающего в топку, так как избыток воздуха ускоряет процесс торения топлива. При недостаточном количестве воздуха факел получается растянутым, топливо полностью не сгорает, что приводит к потере тепла. Чрезмерное количество воздуха недопустимо вследствие повышенных потерь тепла с отходящими дымовыми газами и более интенсивного окисления (окалинообразования) поверхности нагрева.

Воздух, необходимый для горения топлива, подводят к устью форсунки, т.е. к началу факела. В некоторых форсунках топливо распыляется воздухом, который в этом случае вводится в топку совместно с топливом. В ряде конструкций во внутренней полости стен печей




Рис. XXI-1. Схема работы трубчатой печи с объемно-настильным сжиганием топлива:

1 - форсунка; 2 - настильная стенка; 3 - камера радиации (топочная камера); 4 - камера конвекции; 5 - дымовая труба; 6 - змеевик конвекционных труб; 7 - змеевик радиантных труб; 8 - футеровка. Потоки: / - вход сырья; - выход сырья; 111 - топливо и воздух; IV - дымовые газы

размещается канал для подачи так называемого вторичного воздуха, позволяющий подводить необходимый для горения воздух по длине факела, что повышает температуру излучающей стенки и способствует более равномерной передаче тепла радиацией. В такой печи тепло излучением передается от факела, излучающей стенки и трехатомных газов (двуокись углерода, водяной пар, диоксид серы), обладающих избирательной способностью поглощать и излучать лучи определенной длины волны.

Часть лучей через пространство между трубами попадает на поверхность кладки, вдоль которой расположены эти трубы; эти лучи разогревают кладку, и она, в свою очередь, излучает; при этом часть энергии поглощается той частью поверхности труб, которая обращена к стенке кладки.

Настильная стена, а также прочие стены кладки, у которых располо-




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 [ 167 ] 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225



Яндекс.Метрика