Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 [ 90 ] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

Рис. VII-34. Зависимость числа теоретических тарелок на 1 м насадки (ЧТТМ) Меллапак от F-фактора

500.Y

250.Y

12S YI

0,5 0,7

0*5 2 05

, (кг/м-с )

колонны D„. Высоту насадки Я, необходимую для заданного разделения, находят из уравнения

Я = NЯз„,

где N - число теоретических тарелок (см. главы IV-VI); Н - высота насадки, эквивалентная по своему разделительному эффекту одной теоретической тарелке (сокращенно обозначается ВЭТТ).

Как было показано выше, величина ВЭТТ зависит от большого числа факторов. Однако имеющиеся уравнения для расчета ВЭТТ, как правило, не в полной мере учитывают влияние различных факторов и поэтому они имеют ограниченную область применения - только для насадок определенных типов и размеров. В этой связи величину ВЭТТ обычно определяют экспериментально на модельных или реальных смесях.

Очевидно, чем меньше величина ВЭТТ, тем более эффективно работает насадка при разделении данной смеси. Вместе с тем необходимо отметить, что величина ВЭТТ возрастает при увеличении высоты слоя насадки, диаметра аппарата, а также размеров насадочных тел, коэффициента относительной летучести компонентов и вязкости жидкости.

Для оценки эффективности насадки используют также число теоретических тарелок на 1 м высоты насадки (сокращенно ЧТТМ), т.е. величину обратную ВЭТТ.

На рис. VII-34 приведена зависимость ЧТТМ от F-фактора для трех модификаций насадки Меллапак, удельная поверхность которых изменяется от 125 до 500 м/м. Эффективность насадки определена в опытной колонне диаметром 1 м в режиме полного возврата флегмы при изменении давления верха колонны от 2,5 до 96 кПа. Опытными смесями служили транс-цис-декалин и хлор-этилбензол, высота насадки изменялась от 1,4 до 8,5 м. Поскольку поверхность насадки увеличивается от Меллапак 125.Y к Меллапак 500.Y, ЧТТМ при этом возрастает в 4 раза, хотя максимально возможная паровая нагрузка снижается вдвое.



Глава VIII АДСОРБЦИЯ

СУЩНОСТЬ ПРОЦЕССА АДСОРБЦИИ

Адсорбцией называется процесс поглощения газов (паров) или жидкостей поверхностью твердых тел (адсорбентов). В случае избирательного поглощения компонентов смеси появляется возможность ее разделения на составляющие компоненты. Явление адсорбции связано с наличием сил притяжения между молекулами адсорбента и поглощаемого вещества.

Адсорбция является одним из эффективных методов разделения газообразных и жидких смесей компонентов, различающихся структурой молекул. По сравнению с другими массообменными процессами наиболее эффективно ее использование в случае малого содержания извлекаемых компонентов в исходной смеси.

Большую роль в развитии учения об адсорбционных процессах сыграли работы М.С. Цвета в области хроматографии, Н.Д. Зелинского в области угольной адсорбции, М. М. Дубинина и его школы в области теории адсорбции и практического ее применения.

В нефтегазоперерабатывающей и нефтехимической промышленности адсорбция применяется для отбензинивания природных и попутных углеводородных газов, при разделении газов нефтепереработки с целью получения водорода и этилена, для осушки газов и жидкостей, выделения низкомолекулярных ароматических углеводородов (бензола, толуола, ксилолов) из бензиновых фракций, для очистки масел, при очистке сточных вод с применением пылевидного активированного угля и т.п.

Твердое вещество, на поверхности или в порах которого происходит концентрирование поглощаемого вещества, называется адсорбентом. Поглощаемое вещество, находящееся вне пор адсорбента, называется ад-сорбтивом, а после его перехода в адсорбированное состояние - адсорба-том.

Различают два вида адсорбции - физическую и химическую. При физической адсорбции молекулы поглощенного вещества, находящиеся на поверхности адсорбента, не вступают с ним в химическое взаимодействие. При химической адсорбции (хемосорбции) молекулы поглощаемого вещества химически взаимодействуют с адсорбентом. Связь молекул поглощенного вещества (адсорбата) с адсорбентом при физической адсорбции менее прочна, чем при хемосорбции.

Физическая адсорбция является экзотермическим процессом. Теплота адсорбции из газов и паров примерно равна теплоте их конденсации, теплота адсорбции из растворов несколько меньше.

Процесс адсорбционного разделения прекращается, когда активная поверхность (или объем пор) адсорбента оказывается заполненной молекулами адсорбата. Выделение из адсорбента поглощенных компонентов называют десорбцией.

Если в слой адсорбента ввести сравнительно небольшое количество разделяемой смеси, то адсорбироваться будут все ее компоненты. Это происходит до тех пор, пока вся активная поверхность адсорбента не бу-



дет заполнена. Дальнейшее поступление исходной смеси в слой адсорбента приведет к тому, что молекулы, отличающиеся более высокой адсорбируе-мостью, будут частично вытеснять с поверхности адсорбента молекулы вещества с меньшей адсорбируемостью и установится равновесие между адсорбированной и неадсорбированной средами.

При продвижении исходной смеси через определенный слой адсорбента рассмотренный выше процесс протекает послойно в направлении движения исходной разделяемой смеси. Адсорбционное разделение в данном слое адсорбента будет завершено, когда в потоке, выходящем из слоя адсорбента, появится компонент, подлежащий извлечению из исходной смеси, т.е. когда в соответствии с состоянием равновесия активная поверхность адсорбента заполнится извлекаемым компонентом и произойдет «проскок» этого компонента с уходящим потоком.

Исчерпание адсорбционной способности - проскок определяет время защитного действия адсорбента по отношению к данному компоненту. Количество вещества, адсорбируемого поверхностью, определяется состоянием равновесия и зависит от природы адсорбента и адсорбируемого вещества, концентрации последнего в исходной смеси, температуры процесса, а при адсорбции газовой фазы и от давления.

В результате адсорбции концентрация поглощаемого вещества в потоке уменьшается по мере перемещения его через слой адсорбента. Поэтому и количество (концентрация) адсорбируемого вещества по высоте слоя адсорбента также изменяется в пределах от максимального до минимального, соответствующего состоянию равновесия с потоком, покидающим слой адсорбента.

Возможность разделения той или иной смеси методом адсорбции зависит от величины адсорбируемости компонентов, входящих в ее состав. Адсорбируемость веществ зависит от их природы, строения молекул, а также от природы и структуры адсорбента (величины удельной поверхности, размеров пор и т.п.).

Адсорбируемость углеводородов обычно возрастает с увеличением их молекулярной массы, однако более значительное влияние оказывают структура и размеры их молекул.

Так, парафиновые и нафтеновые углеводороды поглощаются в меньшей степени, чем ароматические. Для ароматических углеводородов адсорбируемость возрастает с увеличением числа циклов в молекуле.

Сернистые соединения лучше сорбируются, чем содержащие их парафиновые и нафтеновые углеводороды, и имеют близкую адсорбируемость к ароматическим углеводородам. Это затрудняет отделение сернистых соединений от ароматических путем адсорбции.

Кислородные, смолистые и особенно азотистые органические соединения, содержащиеся в нефтях и нефтепродуктах, отличаются значительно более высокой адсорбируемостью, чем углеводороды, и отделение этих веществ от углеводородной смеси происходит сравнительно легко.

Непредельные низкомолекулярные углеводороды (этилен, пропилен) адсорбируются лучше, чем соответствующие предельные их аналоги (этан, пропан).

Адсорбируемость более высокомолекулярных непредельных углеводородов изучена недостаточно.

Использование адсорбции для разделения смесей, содержащих непредельные углеводороды, в ряде случаев осложняется тем, что в процессе разделения эти углеводороды подвергаются каталитическому воздействию адсорбента, в связи с чем могут происходить их химические превращения, например полимеризация.

Некоторые адсорбенты, например активированный уголь, преимущественно адсорбируют углеводороды, имеющие более высокую температуру кристаллизации, вследствие чего используются для депарафинизации жидких нефтепродуктов.




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 [ 90 ] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225



Яндекс.Метрика