Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 [ 63 ] 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

(абсорбция) данного компонента жидкой фазой из газовой фазы. Чем больше эта движущая сила, тем интенсивнее переходит этот компонент из газовой фазы в жидкую.

По своей природе различают два вида абсорбции: физическую, при которой извлечение компонентов из газа происходит благодаря их растворимости в абсорбентах и химическую (хемосорбцию), основанную на химическом взаимодействии извлекаемых компонентов с активной частью абсорбента. Скорость физической абсорбции определяется диффузионными процессами, скорость хемосорбции зависит от скорости диффузии и химической реакции.

Поглощение компонентов газовой смеси при абсорбции сопровождается выделением тепла, величина которого пропорциональна массе и теплоте растворения поглощенных компонентов.

Процесс абсорбции обратимый, поэтому он используется не только для получения растворов газов в жидкостях, но и для разделения газовых смесей. При этом после поглощения одного или нескольких компонентов газа из газовой смеси необходимо произвести выделение из абсорбента поглощенных компонентов т.е. десорбцию.

При выборе абсорбента учитывают состав разделяемого газа, давление и температуру процесса, производительность установки. Выбор абсорбента определяется также его селективностью, поглотительной способностью, коррозионной активностью, стоимостью, токсичностью и другими факторами.

В нефтяной и газовой промышленности процесс абсорбции применяется для разделения, осушки и очистки углеводородных газов. Из природных и попутных нефтяных газов путем абсорбции извлекают этан, пропан, бутан и компоненты бензина; абсорбцию применяют для очистки природных газов от кислых компонентов - сероводорода, используемого для производства серы, диоксида углерода, серооксида углерода, сероуглерода, тиолов (меркаптанов) и т.п.; с помощью абсорбции также разделяют газы пиролиза и каталитического крекинга и осуществляют санитарную очистку газов от вредных примесей.

В качестве абсорбентов при разделении углеводородных газов используют бензиновые или керосиновые фракции, а в последние годы и газовый конденсат, при осушке - диэтиленгликоль (ДЭГ) и триэтиленгликоль (ТЭГ). Для абсорбционной очистки газов от кислых компонентов применяют Л/-метил-2-пирролидон, гликоли, пропиленкарбонат, трибутилфосфат, метанол; в качестве химического поглотителя используются моно- и диэта-ноламины.

В отличие от ректификации процесс абсорбции протекает в основном однонаправленно, т.е. абсорбент можно считать практически нелетучим. В случае абсорбции многокомпонентной газовой смеси на некоторой ее стадии отдельные компоненты могут вытесняться другими поглощаемыми компонентами. В результате наряду с процессом абсорбции будет протекать процесс частичной десорбции некоторых компонентов, что приведет к распределению компонентов между газовой и жидкой фазами, обусловленному обоими указанными процессами.



ОСНОВНОЕ УРАВНЕНИЕ МАССОПЕРЕДАЧИ ПРИ АБСОРБЦИИ

Абсорбция (десорбция) - диффузионный процесс, в котором участвуют две фазы: газовая и жидкая. Движущей силой процесса абсорбции (десорбции) является разность парциальных давлений поглощаемого компонента в газовой и жидкой фазах, который стремится перейти в ту фазу, где его концентрация меньше, чем это требуется по условию равновесия.

Обозначим парциальное давление поглощаемого компонента в газовой фазе через р,, а парциальное давление того же компонента в газовой фазе, находящейся в равновесии с абсорбентом, через Рр. Если Рг > Рр, то компонент газа переходит в жидкость, т.е. протекает процесс абсорбции (рис. VI-1, а). Если Рг < Рр, то поглощенные компоненты газа переходят из абсорбента в газовую фазу, т.е. осуществляется процесс десорбции (рис. VI-1,6).

Чем больше величина - Рр, тем интенсивнее осуществляется переход компонента из газовой фазы в жидкую. При приближении системы к состоянию равновесия движущая сила уменьшается и скорость перехода компонента из газовой фазы в жидкую замедляется.

Поскольку парциальное давление компонента пропорционально его концентрации, то движущая сила процесса абсорбции или десорбции может быть выражена также через разность концентраций компонента в газовой Лу = у - Ур или жидкой фазе Дх = Хр - х.

Количество вещества М, поглощаемого в единицу времени при абсорбции или выделяемого при десорбции, прямо пропорционально поверхности контакта газовой и жидкой фаз F, движущей силе процесса и коэффициенту пропорциональности К, зависящему от гидродинамического режима процесса и физико-химических свойств системы.

Уравнение массопередачи при абсорбции можно записать в виде

M=A:pF(p-Pp) = A:F(y-yp)=A:,F(Xp-x) (VI.1)

км - Рр) = Чу - Ур) = х(хр - X).

Коэффициент К называется коэффициентом массопередачи при абсорбции и характеризует массу вещества, переданную в единицу времени через единицу поверхности контакта фаз при движущей силе, равной единице.

Единица измерения величины К зависит от единиц измерения составляющих, входящих в уравнение (VI. 1). Так, например, если измерять массу поглощенного компонента в кг/ч, поверхность контакта фаз в м , а движущую силу процесса абсорбции в МПа, то из уравнения (VI. 1) получим единицу измерения К в кг/(м- МПа • ч).

G I Р,>Р, G к Р,<Р,

Рис. VI-1. Схема переноса компонентов при контакте газа с абсорбентом



ПРИНЦИПИАЛЬНЫЕ СХЕМЫ АБСОРБЦИОННЫХ УСТАНОВОК

В промышленности процессы абсорбции и десорбции обычно осуществляются на одной установке, обеспечивающей непрерывную регенерацию и циркуляцию абсорбента по замкнутому контуру между абсорбером и десорбером (рис. VI-2). Поток газа G+i поступает в нижнюю часть абсорбера 1, а сверху подается поток свежего (регенерированного) абсорбента Lq. Непоглощенные компоненты газа Gi уходят с верха

абсорбера, а из его низа выводится поток насыщенного абсорбента L, который поступает через теплообменник 7 и подогреватель 3 на регенерацию в десорбер 4. Регенерация осуществляется либо за счет подвода тепла

О в в нижнюю часть десорбера, либо за счет ввода водяного пара. Регенерированный абсорбент, охлажденный в теплообменнике 7 и холодильнике 2, возвращается в абсорбер. В случае работы десорбера с подводом тепла его можно рассматривать как отгонную ректификационную колонну.

Такую схему применяют, когда абсорбент обладает высокой избирательностью и необходимо из смеси извлечь один компонент или одну целевую фракцию (например, извлечение из газа кислых компонентов, осушка газов). При переработке природных и попутных газов такие схемы не эффективны, так как не обеспечивают получение кондиционной товарной продукции.


Рис. VI-2. Принципиальная схема абсорбционно-десорбциоииой установки:

/ - абсорбер; 2 - холодильник; 3 - подогреватель; 4 - десорбер; 5 - конденсатор; 6 - емкость; 7 - теплообменник. Потоки: I - сырой газ; II - сухой (тощий) газ; III - насыщенный абсорбент; IV - регенерированный абсорбент; V - извлеченные компоненты; VI - несконденсированные газовые компоненты; VII - жидкий продукт




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 [ 63 ] 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225



Яндекс.Метрика