Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [ 17 ] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

пользуется только при научных исследованиях. Из-за сложности оборудования и требований высокой квалификации операторов и специалистов в производственных условиях она пока не применяется.

Твердость горных пород, определенная по описанной методике, значительно выше предела прочности на сжатие.

Поскольку прочность и твердость горных пород взаимосвязаны, на последнюю оказывают влияние те же факторы и в том же направлении, что и на твердость. Твердость горных пород в определяющей степени зависит от минералогического состава. Твердость горных пород существенно зависит от содержания в них кварца и полевых шпатов. Присутствие кварца влияет на твердость глинистых пород некарбонатного типа, меньше - на твердость глинистых пород и чистых мергелей. Твердость в этой группе пород изменяется линейно, пропорционально количеству присутствующего кварца. Твердость глинисто-карбонатных пород существенно зависит от карбонатной составляющей, а песчаников и алевролитов - от типа цементирующего материала. При прочих равных условиях твердость повышается от типа цемента (слева направо): глинистый гидрослюдисто-глинистый карбонатный базальный.

Существенно влияют на твердость структура породы и пористость. Некоторые факторы влияют на твердость неодинаково и в противоположных направлениях: например, геотектонический фактор - предел прочности при сжатии Ri перпендикулярно к напластованию больше предела прочности R параллельно напластованию (R > R), тогда как для твердости результаты прямо противоположны, причем R/ = 1,11,8.

Из технико-технологических факторов на твердость горных пород наибольшее влияние оказывают факторы: масштабный, формы и скоростной. Чем выше твердость горной породы, тем отчетливее влияние масштабного фактора; чем больше размеры площади штампа, тем выше твердость (до определенного размера).

Твердость имеет наименьшие значения при внедрении заостренных наконечников (конусы, клинья) и наибольшие - при плоских торцах при прочих равных условиях. При мгновенном приложении нагрузки твердость горной породы выше, чем при медленном вдавливании.

Твердость должны определять по стандартной, отработанной методике при проверенных и установленных технико-технологических факторах, которые могут дать несопоставимые результаты (форма, скорость нагруже-ния, размеры образца и штампа, угол внедрения штампа в образец, плоскость поверхности и др.).

При оценке рабочего инструмента для разрушения горных пород существенную роль играет характер разрушения пород различного класса. Для упругохрупких и упругопластичных пород зоны разрушения гораздо больше зоны контакта породы и штампа; для пород, не дающих хрупкого разрушения, размеры разрушения и контакта одинаковы (рис. 3.4). Углубление в последнем случае больше.

Отношение глубины погружения штампа после разрушения породы 5 к ее деформации е (упругой и пластичной) до разрушения является показателем, по которому породы делятся на различные классы. Для упругохрупких пород отношение 5/8 = 5,0, для упругопластичных оно равно 2,5-5,0 и для пород, не дающих хрупкого разрушения, равно единице.

Для оценки сопротивляемости горных пород разрушению при бурении пользуются также понятием критического напряжения акр. По В.С. Фе-




Рис. 3.4. Схемы разрушения пород при вдавливании штампа:

а, б - для пород упругохрупких и упругопластичных; в - для пород, не дающих общего хрупкого разрушения

дорову, критическое напряжение - это отношение нагрузки на долото pд, при которой начинается активное объемное разрушение породы, к первоначальной площади контакта. Величина акр характеризует сопротивление породы проникновению в нее рабочих элементов долота и определяется из данных бурения.

Эта величина и твердость по штампу (по Л.А. Шрейнеру) имеют одинаковую физическую сущность и между ними устанавливается корреляционная связь. Твердость по Л.А. Шрейнеру определять проще, чем акр, поэтому она более предпочтительна.

Абразивная способность горных пород - это способность изнашивать разрушающий их инструмент. Это понятие связано с понятием о внешнем трении и износе. Абразивная способность горных пород и механизм ее проявления пока еще недостаточно изучены.

Суммируя отдельные, порой субъективные и противоречивые данные, В.С. Федоров выделил основные положения абразивной способности горных пород применительно к бурению, которые приведены ниже.

Главная причина абразивного износа твердых тел - неровности на соприкасающихся поверхностях. Поверхности касаются только в точках контакта. В случае не очень больших давлений на соприкасающихся поверхностях площадь истинного контакта составляет лишь 2-10-5-2-10-4 части полной площади поверхности, т.е. весьма малую ее часть. Соприкасающиеся поверхности находятся под действием точечных нагружений. Число мест контакта значительно, но площадь их соприкосновения мала. В точках контакта поверхность подвергается одновременному действию усилий, направленных вдоль и нормально к поверхности. Тогда процесс абразивного износа определяется большим числом отдельных царапаний и сколов, вызывающих непрерывное соскабливание с рабочих поверхностей разрушающего инструмента стружек и соскобов.



В общем случае абразивный износ - процесс весьма сложный. В одних участках обеспечивается механическое сцепление (царапание), и здесь сопротивление трения обусловливается прочностью на срез взаимно внедрявшихся элементов поверхности. В других участках обеспечивается молекулярное сцепление и сопротивление разрушению связано с преодолением молекулярных сил. Практически при бурении молекулярными силами можно пренебречь.

Объемный износ V может быть найден из выражения V = 5\vpfs, где 5 - коэффициент износа; - кинетический коэффициент внешнего трения; p - твердость горной породы; f - площадь соприкосновения трущихся поверхностей; s - путь трения.

Тогда для одного и того же изнашивающегося материала при прочих равных условиях при соприкосновении с разными породами (в пределах определенного класса) можно записать: V1/V2 = ц1p1/ц2p2, где ц1, p1 - соответственно коэффициент внешнего трения и твердость первой породы; ц2, p2 - то же, второй породы.

Следовательно (по В.С. Федорову), для бурения мерой относительной абразивной способности горной породы может служить произведение коэффициента внешнего трения и твердости. Тогда факторами, определяющими абразивную способность горных пород, являются те, которые влияют на ее твердость, и кинетический коэффициент внешнего трения. На последний существенное влияние оказывают твердость горных пород, размер и форма зерен, слагающих породу, нормальное давление, скорость скольжения, среда, в которой находятся трущиеся поверхности, температура

и др.

Коэффициент трения о породу тем больше, чем выше ее твердость при одинаковом минералогическом и зерновом составе, что объясняется затрудненным выламыванием зерен из породы повышенной твердости, а также тем, что разрушающий инструмент царапается более интенсивно.

По тем же причинам выше при трении о мелкозернистые породы с остроконечными и ребристыми зернами, чем при трении о крупнозернистые породы с окатанными зернами.

При трении инструмента о породу (нешлифованную) коэффициент является возрастающей функцией нормального давления вплоть до момента, когда это давление не станет равным твердости породы. В дальнейшем остается примерно постоянным.

Для расчетов при бурении в реальных породах следует определять при нормальных давлениях на трущихся поверхностях. Установлено, что при росте скорости скольжения коэффициент трения изменяется, имея максимум: при увеличении нормального давления максимум смещается в сторону меньших скоростей. При сухой чистой поверхности горных пород коэффициент трения имеет наивысшие значения для данной пары. Смоченная водой порода для той же пары имеет более низкие значения, которые еще более снижаются при покрытии поверхности горной породы буровым раствором.

Температура выше 200 °С способствует повышению коэффициента трения. В случае применения твердосплавных разрушающих инструментов влияние температуры начинает проявляться при более высоких ее значениях.




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 [ 17 ] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332



Яндекс.Метрика