Демонтаж бетона: rezkabetona.su

Главная  Переработка нефти и газа 

Скачать эту книгу

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 [ 174 ] 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332


Рис. 15.26. Гидродинамический однороторный тормоз буровой лебедки



Статор 6 состоит из двух симметричных частей, образующих корпус гидродинамического тормоза со стойками 1 для крепления к раме буровой лебедки. Обе части статора отливают из чугуна. Они имеют радиальные лопатки, наклоненные в сторону, противоположную наклону лопаток насосного колеса. Вал 8 на роликоподшипниках 3, 9 и фланцевых стаканах 4 и 7 устанавливается в сквозных расточках статоров. Соосность отверстий обеспечивается центрирующим буртиком в соединении статоров. Стыкуемые плоскости статоров уплотняются паронитовой либо картонной прокладкой 13, затягиваемой крепежными болтами 12.

В рассматриваемой конструкции вал ротора устанавливается на роликовом радиальном и радиально-сферическом двухрядном подшипниках в отличие от более распространенных конструкций, в которых оба подшипника роликовые радиальные. Осевое положение вала фиксируется ради-ально-сферическим подшипником, наружное кольцо которого затягивается торцовой крышкой с регулировочной прокладкой, а внутреннее - закрепительной втулкой 2. Свобода противоположного конца вала обеспечивается перемещением роликов по беговой дорожке внутренней обоймы подшипника.

Осевые зазоры между ротором и статором составляют 4 - 4,5 мм и регулируются набором металлических прокладок, установленных между фланцевыми стаканами и наружными торцами отверстий статоров. Подшипники вала смазываются консистентной смазкой, набиваемой ручным шприцем через масленки. Для предупреждения утечек масла фланцевые стаканы и крышка снабжены щелевыми (жировыми) канавками. Выводной конец вала используется для сцепной муфты, соединяющей гидродинамический тормоз с подъемным валом буровой лебедки. Для уплотнения вращающегося вала применяются сальниковые и торцовые уплотнения.

Сальниковые уплотнения благодаря простоте и дешевизне более широко распространены и состоят из плетеной асбестопроволочной набивки В, промежуточной распорной втулки, грундбуксы и нажимных болтов с контргайками. Износ сальникового уплотнения контролируется по утечке рабочей жидкости через канале! 10. При чрезмерной утечке сальники равномерно подтягиваются нажимными болтами. Нельзя допускать перетяжки сальника, так как это приводит к перегреву и преждевременному выводу сальника из строя.

Для повышения долговечности сальники вала ротора регулярно смазываются графитовой смазкой, подаваемой через масленки. Смазка снижает коэффициент трения, и в результате этого уменьшаются нагрев и износ сальника. Сальниковую набивку осматривают и заменяют после снятия фланцевых стаканов. Для ускорения этих операций используются два болта, вставляемые в резьбовые отверстия фланца стакана. При ввинчивании болтов фланцевый стакан вместе с подшипником и крышкой снимают с вала ротора. Известны конструкции гидродинамических тормозов, в которых подшипники вала установлены на выносных опорах. В результате этого улучшается доступ для осмотра и замены сальниковых набивок, а подшипники вала полностью изолируются от рабочей жидкости. Недостаток этих конструкций - увеличение длины вала, вследствие чего для установки тормоза требуется соответствующее удлинение рамы лебедки.

В качестве рабочей жидкости обычно используют воду, поступающую из холодильника через патрубки 11 в кольцевые камеры статора. По радиальным и тангенциальным каналам А в теле и лопатках статоров вода на-



правляется в межлопаточные полости Б тормоза. Тангенциально направленный поток способствует самовсасыванию, и поэтому поступающая из холодильника вода интенсивно перемешивается с горячей водой в полости тормоза, нагреваемой в результате торможения. Для увеличения проточных сечений тормоза часть лопаток ротора укорочена.

Из гидротормоза вода отводится в холодильник через верхний патрубок. Необходимый для этого напор создается углублениями на наружной цилиндрической поверхности ротора либо сужением радиального зазора между ротором и статором у верхнего патрубка, что достигается смещением фланцевых стаканов подшипников ротора относительно оси статора. После охлаждения жидкость самотеком переливается из холодильника в гидротормоз. Создаваемый тормозной момент зависит от уровня воды в холодильнике, устанавливаемого с помощью ступенчатых и бесступенчатых регуляторов.

Гидродинамический тормоз используется при спуске бурильных труб, когда вес колонны превышает 100 - 200 кН. При подъеме труб и спуске незагруженного элеватора гидродинамический тормоз необходимо отключать, так как его действие в этом процессе отрицательное. При подъемных операциях работа гидродинамического тормоза вызывает излишние затраты мощности и износ уплотнений и подшипников вала ротора, что сокращает срок службы тормоза. При спуске незагруженного элеватора скорость спуска уменьшается и в результате этого возрастает общая продолжительность спускоподъемных операций.

Для сокращения времени, затрачиваемого на частые включения и отключения, подъемный вал лебедки соединяется с валом гидродинамического тормоза посредством сцепных муфт. Наиболее эффективна фрикционная муфта, позволяющая оперативно соединять тормоз с лебедкой при спусках бурильных свечей.

Рассмотрим основы расчета и внешние характеристики гидродинамических тормозов (табл. 15.13).

Таблица 15.13

Техническая характеристика гидродинамических тормозов

Показатель

УТГ-1000

УТГ-1450

ТГ-1-1200

ШТГ-1-1200

Активный диаметр ротора, м

1000

1450

1200

1200

Число роторов

Максимальная частота вра-

щения ротора, об/мин

Тормозной момент, кН-м:

при 250 об/мин

максимально допустимый

Масса тормоза, кг

3306

5200

3600

2730

Габариты тормоза, мм:

высота

1590

1870

1750

1810

ширина

1680

1610

1575

длина

1435

1533

1090

1138

Регулирование наполнением

Ступенчатое

Бесступенчатое

Полезный объем регулятора

0,52

уровня воды, м3

Масса регулятора, кг

Габариты регулятора, мм:

высота

1950

2466

1925

1750

ширина

1094

длина

1062

1400

1075

Примечание. Обозначения: УТГ -

гидродинамический тормоз Уралмашзавода:

ТГ - гидродинамический тормоз ВЗБТ; ШТГ

- гидродинамический тормоз завода им. лейт.

Шмидта.




0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 [ 174 ] 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332



Яндекс.Метрика